题目内容

已知数列{an}的前n项和Sn,满足Sn=a(Sn-an+1)(a为常数,且a>0),且4a3是a1与2a2的等差中项.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=(2n+1)an,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知得S1=a1=a(a1-a1+1),Sn-1=a(Sn-1-an-1+1),从而{an}是首项为a公比为a的等比数列,进而an=a•an-1=an.由4a3是a1与2a2的等差中项,得8a3=a+2a2,由此能求出an=(
1
2
n
(Ⅱ)由bn=(2n+1)an=(2n+1)•(
1
2
n,利用错位相减法能求出Tn=5-(2n+5)(
1
2
)n
解答: 解:(Ⅰ)∵Sn=a(Sn-an+1),
∴S1=a1=a(a1-a1+1),解得a1=1,
当n≥2时,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),
两式相减,得an=a•an-1,∴
an
an-1
=a

∴{an}是首项为a公比为a的等比数列,
an=a•an-1=an
∵4a3是a1与2a2的等差中项,
∴8a3=a1+2a2,即8a3=a+2a2
解得a=
1
2
,或a=0(舍),或a=-
1
4
(舍),
∴an=(
1
2
n
(Ⅱ)∵bn=(2n+1)an=(2n+1)•(
1
2
n
∴Tn=
1
2
+5×(
1
2
)2+7×(
1
2
)3+…+(2n+1)•(
1
2
)n
,①
1
2
Tn
=3×(
1
2
)2+5×(
1
2
)3+7×(
1
2
)4
+…+(2n+1)×(
1
2
)n+1
,②
①-②得:
1
2
Tn=
3
2
+2×[(
1
2
)2+(
1
2
)3+…+(
1
2
)n]-(2n+1)×(
1
2
)n+1

=
3
2
+2×
1
4
-(
1
2
)
n+1
1-
1
2
-(2n+1)×(
1
2
)n+1

=
5
2
-(2n+5)(
1
2
)n+1

Tn=5-(2n+5)(
1
2
)n
点评:本题主要考查数列的通项公式、前n项和公式的求法,考查等差数列、等比数列等基础知识,考查抽象概括能力,推理论证能力,运算求解能力,考查化归与转化思想、函数与方程思想,解题时要注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网