题目内容
数列{an}满足an+1+(-1)nan=2n-1,设Sn=a1+a2+a3+…+an,
(1)求证:a4n+4=a4n+8.
(2)令bn=a4n-3+a4n-2+a4n-1+a4n,求证:数列{bn}是等差数列.
(3)求S60的值.
(1)求证:a4n+4=a4n+8.
(2)令bn=a4n-3+a4n-2+a4n-1+a4n,求证:数列{bn}是等差数列.
(3)求S60的值.
考点:数列的求和,数列递推式
专题:综合题,等差数列与等比数列
分析:(1)因为an+1+(-1)nan=2n-1,所以an+1=-(-1)nan+2n-1,再代入,即可证明a4n+4=a4n+8.
(2)利用条件可得bn+1=bn+16,即可证明数列{bn}是等差数列;
(3)确定数列{an}的前60项和即为数列{bn}的前15项和,即可得出结论.
(2)利用条件可得bn+1=bn+16,即可证明数列{bn}是等差数列;
(3)确定数列{an}的前60项和即为数列{bn}的前15项和,即可得出结论.
解答:
(1)证明:因为an+1+(-1)nan=2n-1,
所以an+1=-(-1)nan+2n-1.
所以a4n-3=-a4n-4+2(4n-4)-1,
a4n-2=a4n-3+2(4n-3)-1,
a4n-1=-a4n-2+2(4n-2)-1,
a4n=a4n-1+2(4n-1)-1,
a4n+1=-a4n+2×4n-1,
a4n+2=a4n+1+2(4n+1)-1,
a4n+3=-a4n+2+2(4n+2)-1,
a4n+4=a4n+3+2(4n+3)-1,
所以a4n+4=a4n+3+2(4n+3)-1=-a4n+2+2(4n+2)-1+2(4n+3)-1
=-a4n+1-2(4n+1)+1+2(4n+2)-1+2(4n+3)-1
=a4n-2×4n+1-2(4n+1)+1+2(4n+2)-1+2(4n+3)-1
=a4n+8,
即a4n+4=a4n+8.
(2)证明:令bn=a4n-3+a4n-2+a4n-1+a4n,
则bn+1=a4n+1+a4n+2+a4n+3+a4n+4.
同理,a4n+3=a4n-1,a4n+2=a4n-2+8,a4n+1=a4n-3.
所以a4n+1+a4n+2+a4n+3+a4n+4=a4n+a4n-1+a4n-2+a4n-3+16.
即bn+1=bn+16,故数列{bn}是等差数列.
(3)解:a2-a1=2×1-1,①
a3+a2=2×2-1,②
a4-a3=2×3-1,③
②-①得a3+a1=2;②+③得a2+a4=8,
所以a1+a2+a3+a4=10,即b1=10.
所以数列{an}的前60项和即为数列{bn}的前15项和,
即S60=10×15+
×16=1 830.
所以an+1=-(-1)nan+2n-1.
所以a4n-3=-a4n-4+2(4n-4)-1,
a4n-2=a4n-3+2(4n-3)-1,
a4n-1=-a4n-2+2(4n-2)-1,
a4n=a4n-1+2(4n-1)-1,
a4n+1=-a4n+2×4n-1,
a4n+2=a4n+1+2(4n+1)-1,
a4n+3=-a4n+2+2(4n+2)-1,
a4n+4=a4n+3+2(4n+3)-1,
所以a4n+4=a4n+3+2(4n+3)-1=-a4n+2+2(4n+2)-1+2(4n+3)-1
=-a4n+1-2(4n+1)+1+2(4n+2)-1+2(4n+3)-1
=a4n-2×4n+1-2(4n+1)+1+2(4n+2)-1+2(4n+3)-1
=a4n+8,
即a4n+4=a4n+8.
(2)证明:令bn=a4n-3+a4n-2+a4n-1+a4n,
则bn+1=a4n+1+a4n+2+a4n+3+a4n+4.
同理,a4n+3=a4n-1,a4n+2=a4n-2+8,a4n+1=a4n-3.
所以a4n+1+a4n+2+a4n+3+a4n+4=a4n+a4n-1+a4n-2+a4n-3+16.
即bn+1=bn+16,故数列{bn}是等差数列.
(3)解:a2-a1=2×1-1,①
a3+a2=2×2-1,②
a4-a3=2×3-1,③
②-①得a3+a1=2;②+③得a2+a4=8,
所以a1+a2+a3+a4=10,即b1=10.
所以数列{an}的前60项和即为数列{bn}的前15项和,
即S60=10×15+
| 15×14 |
| 2 |
点评:本题考查数列递推式,考查数列的求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
已知点P(0,3)及圆C:x2+y2-8x-2y+12=0,过P的最短弦所在的直线方程为( )
| A、x+2y+3=0 |
| B、x-2y+3=0 |
| C、2x-y+3=0 |
| D、2x+y-3=0 |