题目内容
求证:1-
+
-
+…+
-
=
+
+…+
,n∈N*.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
考点:数列的求和
专题:等差数列与等比数列
分析:1-
+
-
+…+
-
=1+
+
+
+…+
+
-2(
+
+
+
+…+
),由此能证明1-
+
-
+…+
-
=
+
+…+
,n∈N*.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
解答:
证明:1-
+
-
+…+
-
=1+
+
+
+…+
+
-2(
+
+
+
+…+
)
=1+
+
+
+…+
+
-(1+
+
+
+…+
+
)
=
+
+…+
.
∴1-
+
-
+…+
-
=
+
+…+
,n∈N*.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 2n |
=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
∴1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
点评:本题考查数列前n项和与差的证明,是中档题,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目
若f(x)=x-1,x∈{0,1,2},则函数f(x)的值域是( )
| A、{0,1,2} |
| B、{y|0<y<2} |
| C、{-1,0,1 } |
| D、{y|-1≤y≤1} |
下列函数中,值域为(0,+∞)的函数是( )
A、y=2
| ||||
B、y=(
| ||||
C、y=
| ||||
D、y=
|