题目内容

设数列{an}满足an+1=an2-nan+1(n∈N*
(1)当a1=2时,求a2、a3、a4,并由此猜想出an的一个通项公式;
(2)当a1≥2时,证明:对?n∈N*,有an≥n+1.
考点:数学归纳法,数列递推式
专题:综合题,点列、递归数列与数学归纳法
分析:(1)由a1=2,an+1=an2-nan+1,把n=1,2,3分别代入可求a2,a3,a4的值,归纳数列中每一项的值与序号的关系,我们可以归纳推理出an的一个通项公式.
(2)an≥n+1的证明可以使用数学归纳法,先证明n=1时不等式成立,再假设n=k时不等式成立,进而论证n=k+1时,不等式依然成立,最终得到不等式an≥n+1恒成立.
解答: 解:(1)由a1=2,得a2=a12-a1+1=3
由a2=3,得a3=a22-2a2+1=4
由a3=4,得a4=a32-3a3+1=5
故猜想an=n+1;
(2)用数学归纳法证明:
①当n=1时,a1≥2=1+1,不等式成立.
②假设当n=k时不等式成立,即ak≥k+1,
那么ak+1=ak(ak-k)+1≥(k+1)(k+1-k)+1=k+2.
也就是说,当n=k+1时,ak+1≥(k+1)+1
据①和②,对于所有n≥1,有an≥n+1.
点评:本题主要考查了由数列的递推公式求解数列的通项,解题的关键是由前几项归纳出数列项的规律.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).但归纳推理的结论不一定正确,我们要利用数学归纳法等方法对归纳的结论进行进一步的论证
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网