题目内容
已知f(x)=
(cos4x-sin4x)+
sinxcosx.
(1)化简f(x)为f(x)=Asin(wx+φ)的形式;
(2)若
<α<π,
<β<
,f(
)=
,f(
-
)=
,求sin(α+β)的值.
| 1 |
| 2 |
| 3 |
(1)化简f(x)为f(x)=Asin(wx+φ)的形式;
(2)若
| π |
| 2 |
| π |
| 4 |
| 2π |
| 3 |
| α |
| 2 |
| 1 |
| 2 |
| β |
| 2 |
| π |
| 6 |
| ||
| 2 |
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:(1)由同角三角函数关系式和二角和的正弦公式即可化简可得f(x)=sin(2x+
).
(2)由已知可得
<α+
<
,
<β-
<
,从而可求cos(α+
)的值,cos(β-
)的值,从而可求sin(α+β)的值.
| π |
| 6 |
(2)由已知可得
| 2π |
| 3 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 12 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
解答:
解:(1)f(x)=
(cos4x-sin4x)+
sinxcosx=
(cos2x-sin2x)(cos2x+sin2x)+
sinxcosx=
cos2x+
sin2x=sin(2x+
).
(2)∵
<α<π,
<β<
,f(
)=sin(α+
)=
,f(
-
)=sin[2(
-
)+
]=sin(β-
)=
,
∵
<α+
<
,
<β-
<
,
∴cos(α+
)=-
=-
,cos(β-
)=
=
,
∴sin(α+β)=sin(α+
+β-
)=sin(α+
)cos(β-
)+cos(α+
)sin(β-
)=
×
+(-
)×
=
.
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
(2)∵
| π |
| 2 |
| π |
| 4 |
| 2π |
| 3 |
| α |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| β |
| 2 |
| π |
| 6 |
| β |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| ||
| 2 |
∵
| 2π |
| 3 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 12 |
| π |
| 6 |
| π |
| 2 |
∴cos(α+
| π |
| 6 |
1-sin2(α+
|
| ||
| 2 |
| π |
| 6 |
1-sin2(β-
|
| 1 |
| 2 |
∴sin(α+β)=sin(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
1-
| ||
| 4 |
点评:本题值域考查了两角和与差的正弦函数公式的应用,属于基本知识的考查.
练习册系列答案
相关题目