题目内容
20.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=$\frac{2x-k}{{x}^{2}+1}$的定义域为[x1,x2],g(k)=f(x)min-f(x)max,若对任意k∈R,恒有g(k)≤a$\sqrt{1+{k}^{2}}$成立,则实数a的取值范围是a≥-1.分析 由题意可得f′(x)=$\frac{2({x}^{2}+1)-2x(2x-k)}{({x}^{2}+1)^{2}}$=$\frac{-2{x}^{2}+2kx+2}{({x}^{2}+1)^{2}}$>0,从而可得g(k)=f(x1)-f(x2)=$\frac{2{x}_{1}-k}{{{x}_{1}}^{2}+1}$-$\frac{2{x}_{2}-k}{{{x}_{2}}^{2}+1}$,化简可得g(k)=$\frac{\sqrt{{k}^{2}+1}(-\frac{1}{2}-2-{k}^{2})}{\frac{1}{16}+{k}^{2}+\frac{1}{2}+1}$,从而化恒成立为a≥$\frac{-{k}^{2}-\frac{5}{2}}{{k}^{2}+\frac{25}{16}}$=-1-$\frac{\frac{15}{16}}{{k}^{2}+\frac{25}{16}}$恒成立,从而求得.
解答 解:∵x1,x2是方程4x2-4kx-1=0(k∈R)的两个不等实根,
∴x1+x2=k,x1x2=-$\frac{1}{4}$,
∵f(x)=$\frac{2x-k}{{x}^{2}+1}$,
∴f′(x)=$\frac{2({x}^{2}+1)-2x(2x-k)}{({x}^{2}+1)^{2}}$=$\frac{-2{x}^{2}+2kx+2}{({x}^{2}+1)^{2}}$,
∵x∈[x1,x2]时,4x2-4kx-1≤0,
∴-2x2+2kx+2>0,
故f(x)在[x1,x2]上是增函数,
故g(k)=f(x)min-f(x)max
=f(x1)-f(x2)=$\frac{2{x}_{1}-k}{{{x}_{1}}^{2}+1}$-$\frac{2{x}_{2}-k}{{{x}_{2}}^{2}+1}$
=$\frac{(2{x}_{1}-k)({{x}_{2}}^{2}+1)-(2{x}_{2}-k)({{x}_{1}}^{2}+1)}{({{x}_{1}}^{2}+1)({{x}_{2}}^{2}+1)}$
=$\frac{({x}_{2}-{x}_{1})(2{x}_{1}{x}_{2}-2-k({x}_{2}+{x}_{1}))}{{(x}_{1}{x}_{2})^{2}+({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}+1}$
=$\frac{\sqrt{{k}^{2}+1}(-\frac{1}{2}-2-{k}^{2})}{\frac{1}{16}+{k}^{2}+\frac{1}{2}+1}$,
∵g(k)≤a$\sqrt{1+{k}^{2}}$,
∴a≥$\frac{-{k}^{2}-\frac{5}{2}}{{k}^{2}+\frac{25}{16}}$=-1-$\frac{\frac{15}{16}}{{k}^{2}+\frac{25}{16}}$恒成立,
故≥-1,
故答案为:a≥-1.
点评 本题考查了导数的综合应用及恒成立问题与最值问题的应用,同时考查了方程思想与转化思想的应用.
| A. | (-3,+∞) | B. | (-∞,3) | C. | [-3,3) | D. | (-3,3] |
| A. | -$\frac{1}{2}+ln2$ | B. | $\frac{1}{2}-ln2$ | C. | -1+ln2 | D. | 1+ln2 |
| A. | 215种 | B. | 275种 | C. | 25种 | D. | 225种 |
| A. | y=2|x| | B. | y=lnx | C. | $y={x^{\frac{1}{3}}}$ | D. | $y=x+\frac{1}{x}$ |