题目内容

已知f(x)=
x+2
,求f′(x).(不用公式)
考点:导数的运算
专题:导数的概念及应用
分析:设函数 y=f(x)在点 x0的某个邻域内有定义,当x在 x0处有变化△x=x-x0,x也在该邻域内时,相应地函数值变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数 y=f(x)在点 x0处可导,并称这个极限值为函数 y=f(x)在点 x0处的导数记为 f′(x0).
解答: 解:∵△y=f(x+△x)-f(x)=
x+△x+2
-
x+2
=
△x
x+△x+2
+
x+2

△y
△x
=
1
x+△x+2
+
x+2

∴f′(x)=
lim
△x→0
△y
△x
=
lim
△x→0
1
x+△x+2
+
x+2
=
1
2
x+2
点评:本题考查了利用导数的定义求函数的导数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网