题目内容
8.如图所示y=sin(ωx+φ)的图象可以由y=sinωx的图象沿x轴经怎样的平移得到的( )| A. | 沿x轴向左平移$\frac{π}{6}$个单位 | B. | 沿x轴向左平移$\frac{π}{3}$个单位 | ||
| C. | 沿x轴向右平移$\frac{π}{6}$个单位 | D. | 沿x轴向右平移$\frac{π}{6}$个单位 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答
解:如图所示,∵$\frac{π}{4}$-$\frac{π}{12}$=$\frac{π}{6}$,
故y=sin(ωx+φ)的图象可以由y=sinωx的图象沿x轴向左平移$\frac{π}{6}$个单位得到的,
故选:A.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
3.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥1\\ x+y≥1\\ 2x-y≤4\end{array}\right.$,则$z=\frac{{{y^2}+\frac{1}{3}xy+{x^2}}}{x^2}$的最大值与最小值的比值 为( )
| A. | $\frac{12}{7}$ | B. | $\frac{77}{75}$ | C. | $\frac{95}{36}$ | D. | $\frac{125}{77}$ |
18.设x,y满足约束条件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目标函数$z=x+\frac{n}{2}y({n>0})$,z最大值为2,则$y=tan({nx+\frac{π}{6}})$的图象向右平移$\frac{π}{6}$后的表达式为( )
| A. | $y=tan({2x+\frac{π}{6}})$ | B. | $y=cot({x-\frac{π}{6}})$ | C. | $y=tan({2x-\frac{π}{6}})$ | D. | y=tan2x |