题目内容

7.设集合A={x|x2-4x+3≥0},B={x|2x-3≤0},则A∪B=(  )
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

分析 先分别求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x|x2-4x+3≥0}={x|x≤1或x≥3},
B={x|2x-3≤0}={x|x≤$\frac{3}{2}$},
∴A∪B={x|x$≤\frac{3}{2}$或x≥3}=(-∞,$\frac{3}{2}$]∪[3,+∞).
故选:D.

点评 本题考查集合的求法,是基础题,解题时要认真审题,注意并集定义和不等式性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网