题目内容
已知数列{an}满足3nan+1=(an+2n)(n+1),n∈N+,且a1=
.
(Ⅰ)设数列{bn}满足bn=
-1,求证:数列{bn}是等比数列;
(Ⅱ)若Sn为数列{an}的前n项和,求证:4Sn<2n2+2n+3.
| 4 |
| 3 |
(Ⅰ)设数列{bn}满足bn=
| an |
| n |
(Ⅱ)若Sn为数列{an}的前n项和,求证:4Sn<2n2+2n+3.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出bn+1=
-1=
(
-1)=
bn,由此能证明{bn}是以
为公比的等比数列.
(Ⅱ)由(1)知an=
+n,由此利用裂顶求和法求出4Sn=3-
-
+2n(n+1),由此能证明4Sn<2n2+2n+3.
| an+1 |
| n+1 |
| 1 |
| 3 |
| an |
| n |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)由(1)知an=
| n |
| 3n |
| 3 |
| 3n |
| 2n |
| 3n |
解答:
(Ⅰ)证明:∵bn=
-1,3nan+1=(an+2n)(n+1),
∴bn+1=
-1
=
-1
=
-1
=
+
-1
=
•
-
=
(
-1)=
bn,
∴{bn}是以
为公比的等比数列.(6分)
(Ⅱ)证明:由(1)知
-1=(
-1)•(
)n-1=(
)n,
∴an=
+n,(7分)
∴Sn=(
+1)+(
+2)+(
+3)+…+(
+n)
=(
+
+
+…+
)+(1+2+3+…+n),(8分)
设Tn=
+
+
+…+
,①
则
Tn=
+
+…+
,②
①-②得:
Tn=
+
+…+
-
=
(1-
)-
,
∴Tn=
(1-
)-
,(11分)
∴Sn=Tn+
=
(1-
)-
+
,(12分)
即4Sn=3-
-
+2n(n+1)
=2n2+2n+3-
<2n2+2n+3.
∴4Sn<2n2+2n+3.(14分)
| an |
| n |
∴bn+1=
| an+1 |
| n+1 |
=
| ||
| n+1 |
=
| an+2n |
| 3n |
=
| an |
| 3n |
| 2 |
| 3 |
=
| 1 |
| 3 |
| an |
| n |
| 1 |
| 3 |
=
| 1 |
| 3 |
| an |
| n |
| 1 |
| 3 |
∴{bn}是以
| 1 |
| 3 |
(Ⅱ)证明:由(1)知
| an |
| n |
| a1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=
| n |
| 3n |
∴Sn=(
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
=(
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
设Tn=
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
则
| 1 |
| 3 |
| 1 |
| 32 |
| 2 |
| 33 |
| n |
| 3n+1 |
①-②得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| n |
| 3n+1 |
=
| 1 |
| 2 |
| 1 |
| 3n |
| n |
| 3n+1 |
∴Tn=
| 3 |
| 4 |
| 1 |
| 3n |
| n |
| 2×3n |
∴Sn=Tn+
| n(n+1) |
| 2 |
| 3 |
| 4 |
| 1 |
| 3n |
| n |
| 2×3n |
| n(n+1) |
| 2 |
即4Sn=3-
| 3 |
| 3n |
| 2n |
| 3n |
=2n2+2n+3-
| 2n+3 |
| 3n |
<2n2+2n+3.
∴4Sn<2n2+2n+3.(14分)
点评:本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目