题目内容

已知数列{an}满足3nan+1=(an+2n)(n+1),n∈N+,且a1=
4
3

(Ⅰ)设数列{bn}满足bn=
an
n
-1,求证:数列{bn}是等比数列;
(Ⅱ)若Sn为数列{an}的前n项和,求证:4Sn<2n2+2n+3.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出bn+1=
an+1
n+1
-1
=
1
3
(
an
n
-1)
=
1
3
bn
,由此能证明{bn}是以
1
3
为公比的等比数列.
(Ⅱ)由(1)知an=
n
3n
+n
,由此利用裂顶求和法求出4Sn=3-
3
3n
-
2n
3n
+2n(n+1),由此能证明4Sn<2n2+2n+3.
解答: (Ⅰ)证明:∵bn=
an
n
-1,3nan+1=(an+2n)(n+1),
bn+1=
an+1
n+1
-1

=
(an+2n)(n+1)
3n
n+1
-1

=
an+2n
3n
-1

=
an
3n
+
2
3
-1

=
1
3
an
n
-
1
3

=
1
3
(
an
n
-1)
=
1
3
bn

∴{bn}是以
1
3
为公比的等比数列.(6分)
(Ⅱ)证明:由(1)知
an
n
-1=(
a1
1
-1)•(
1
3
)n-1
=(
1
3
)n

an=
n
3n
+n
,(7分)
Sn=(
1
3
+1)+(
2
32
+2)+(
3
33
+3)
+…+(
n
3n
+n

=(
1
3
+
2
32
+
3
33
+…+
n
3n
)+(1+2+3+…+n),(8分)
设Tn=
1
3
+
1
32
+
3
33
+…+
n
3n
,①
1
3
Tn
=
1
32
+
2
33
+…+
n
3n+1
,②
①-②得:
2
3
Tn
=
1
3
+
1
32
+…+
1
3n
-
n
3n+1

=
1
2
(1-
1
3n
)-
n
3n+1

∴Tn=
3
4
(1-
1
3n
)
-
n
3n
,(11分)
Sn=Tn+
n(n+1)
2
=
3
4
(1-
1
3n
)
-
n
3n
+
n(n+1)
2
,(12分)
即4Sn=3-
3
3n
-
2n
3n
+2n(n+1)
=2n2+2n+3-
2n+3
3n

<2n2+2n+3.
∴4Sn<2n2+2n+3.(14分)
点评:本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网