题目内容
14.数列{an}中,${a_1}=1,{a_2}=\frac{2}{3}$,且n≥2时,有$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$,则( )| A. | ${a_n}={(\frac{2}{3})^n}$ | B. | ${a_n}={(\frac{2}{3})^{n-1}}$ | C. | ${a_n}=\frac{2}{n+2}$ | D. | ${a_n}=\frac{2}{n+1}$ |
分析 通过$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$及${a_1}=1,{a_2}=\frac{2}{3}$可知数列{$\frac{1}{{a}_{n}}$}是首项为1、公差为$\frac{1}{2}$的等差数列,进而计算可得结论.
解答 解:∵当n≥2时,有$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$,
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,
又∵$\frac{1}{{a}_{1}}$=1,$\frac{1}{{a}_{2}}$=$\frac{3}{2}$,
∴数列{$\frac{1}{{a}_{n}}$}是首项为1、公差为$\frac{1}{2}$的等差数列,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$,
故选:D.
点评 本题考查数列的通项,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
4.设a=log32,b=20.3,c=30.4,则a,b,c的大小关系是( )
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
2.已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有( )
| A. | e2016f(-2016)<f(0),f(2016)<e2016f(0) | B. | e2016f(-2016)>f(0),f(2016)>e2016f(0) | ||
| C. | e2016f(-2016)<f(0),f(2016)>e2016f(0) | D. | e2016f(-2016)>f(0),f(2016)<e2016f(0) |
9.不等式组$\left\{\begin{array}{l}2x>4\\ 2{x^2}-3x-2>0\\ 3x+a>0\end{array}\right.$的解集是{x|x>2},则实数a的取值范围是( )
| A. | a≤-6 | B. | a≥-6 | C. | a≤6 | D. | a≥6 |
19.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
6.已知A(2,0,1),B(1,-3,1),点M在x轴上,且到A、B两点的距离相等,则M的坐标为( )
| A. | (-3,0,0) | B. | (0,-3,0) | C. | (0,0,-3) | D. | (0,0,3) |