题目内容

已知tanθ=2,则2sin2θ+sinθcosθ-cos2θ=(  )
A、-
4
3
B、-
6
5
C、
4
5
D、
9
5
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:原式分母看做“1”,利用同角三角函数间的基本关系化简,把tanθ的值代入计算即可求出值.
解答: 解:∵tanθ=2,
∴原式=
2sin2θ+sinθcosθ-cos2θ
sin2θ+cos2θ
=
2tan2θ+tanθ-1
tan2θ+1
=
8+2-1
4+1
=
9
5

故选:D.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网