题目内容
19.在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)中,若过双曲线左顶点A斜率为1的直线交右支于点B,点B在x轴上的射影恰好为双曲线的右焦点F,则该双曲线的离心率为2.分析 由题意可得A(-a,0),F(c,0),令x=c,代入双曲线的方程,可得B的坐标,由两点的斜率公式,化简整理,结合a,b,c的关系和离心率公式,计算即可得到所求值.
解答 解:由题意可得A(-a,0),F(c,0),
令x=c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
即有B(c,$\frac{{b}^{2}}{a}$),
由直线AB的斜率为1,可得:
$\frac{\frac{{b}^{2}}{a}}{c+a}$=1,
即有b2=a(c+a),
又b2=c2-a2=(c-a)(c+a),
即有c-a=a,即c=2a,
e=$\frac{c}{a}$=2.
故答案为:2.
点评 本题考查双曲线的离心率的求法,注意运用两点的直线的斜率公式和基本量的关系,考查运算能力,属于中档题.
练习册系列答案
相关题目
14.若方程$\left\{\begin{array}{l}{x=1-3t}\\{y=4t}\end{array}\right.$(t为参数)与$\left\{\begin{array}{l}{x=1+λcosθ}\\{y=λsinθ}\end{array}\right.$(λ为参数)表示同一条直线,则λ与t的关系是( )
| A. | λ=5t | B. | λ=-5t | C. | t=5λ | D. | t=-5λ |
8.某酒厂生产A、B两种优质白酒,生产每吨白酒所需的主要原料如表:
已知每吨A白酒的利润是7万元,每吨B白酒的利润是12万元,由于条件限制,该酒厂目前库存高粱360吨,大米300吨,小麦200吨.
(Ⅰ)设生产A、B两种白酒分别为x吨、y吨,总利润为z万元,请列出满足上述条件的不等式组及目标函数;
(Ⅱ)生产A、B两种白酒各多少吨,才能获得最大利润?并求出最大利润.
| 白酒品种 | 高粱(吨) | 大米(吨) | 小麦(吨) |
| A | 9 | 3 | 4 |
| B | 4 | 10 | 5 |
(Ⅰ)设生产A、B两种白酒分别为x吨、y吨,总利润为z万元,请列出满足上述条件的不等式组及目标函数;
(Ⅱ)生产A、B两种白酒各多少吨,才能获得最大利润?并求出最大利润.
9.已知全集U=R,集合P={x|lnx2≤1},Q={y|y=sinx+tanx,x∈[0,$\frac{π}{4}}$]},则P∪Q为( )
| A. | (-$\sqrt{e}$,$\frac{{\sqrt{2}+2}}{2}}$) | B. | [-$\sqrt{e}$,$\frac{{\sqrt{2}+2}}{2}}$] | C. | (0,$\frac{{\sqrt{2}+2}}{2}}$] | D. | (0,$\sqrt{e}}$] |