题目内容

3.如图,等边△ABC的边长为2,△ADE也是等边三角形且边长为1,M为DE的中心,在△ABC所在平面内,△ADE绕A逆时针旋转一周,$\overrightarrow{BD}$•$\overrightarrow{AM}$的最大值为(  )
A.$\frac{3}{4}$B.$\frac{3}{4}$+$\sqrt{3}$C.$\frac{3+\sqrt{3}}{4}$D.$\frac{3}{4}$+2$\sqrt{3}$

分析 设∠BAD=θ,(0≤θ≤2π),则∠CAE=θ,把$\overrightarrow{BD}$•$\overrightarrow{AM}$转化为含有θ的三角函数,利用辅助角公式化积后得答案.

解答 解:设∠BAD=θ,(0≤θ≤2π),则∠CAE=θ,
则$\overrightarrow{BD}$•$\overrightarrow{AM}$=($\overrightarrow{AD}-\overrightarrow{AB}$)•$\frac{1}{2}$($\overrightarrow{AD}+\overrightarrow{AE}$)=$\frac{1}{2}({\overrightarrow{AD}}^{2}+\overrightarrow{AD}•\overrightarrow{AE}-\overrightarrow{AB}•\overrightarrow{AD}-\overrightarrow{AB}•\overrightarrow{AE})$
=$\frac{1}{2}$$+\frac{1}{4}$$-\frac{1}{2}×2×1×cos(θ+\frac{π}{3})$
=$\frac{3}{4}$-cosθ-cosθcos$\frac{π}{3}$+sinθsin$\frac{π}{3}$
=$\frac{3}{4}$-$\frac{3}{2}cosθ+\frac{\sqrt{3}}{2}sinθ$
=$\sqrt{3}sin(θ-\frac{π}{6})+\frac{3}{4}$.
∴当$θ=\frac{2π}{3}$时,$\overrightarrow{BD}$•$\overrightarrow{AM}$的最大值为$\sqrt{3}+\frac{3}{4}$.
故选:B.

点评 本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网