题目内容

19.设实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥1\\ x+y≤4\\ x≥0\\ y≥0\end{array}\right.$,则目标函数z=x-3y的取值范围为(  )
A.[-12,1]B.[-12,0]C.[-2,4]D.[1,4]

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合直线的截距,利用数形结合进行求解即可.

解答 解:由z=x-3y得y=$\frac{1}{3}x-\frac{z}{3}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{3}x-\frac{z}{3}$,
由图象可知当直线y=$\frac{1}{3}x-\frac{z}{3}$经过点C(4,0)时,直线y=$\frac{1}{3}x-\frac{z}{3}$的截距最小,
此时z最大,此时z=4,
经过点B时,直线截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y=1}\\{x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{5}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即B($\frac{5}{2}$,$\frac{3}{2}$).
代入目标函数z=x-3y,
得z=$\frac{5}{2}$-3×$\frac{3}{2}$=-2,
即-2≤z≤4,
故选:C.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网