题目内容
α:x=1,β:x2=1,则α是β的( )
| A、充分非必要条件 |
| B、必要非充分条件 |
| C、充要条件 |
| D、既非充分又非必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义即可得到结论.
解答:
解:当x=1时,x2=1,即充分性成立,
若x2=1,解得x=±1,即必要不充分条件,
则α是β的充分不必要条件,
故选:A
若x2=1,解得x=±1,即必要不充分条件,
则α是β的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件,比较基础.
练习册系列答案
相关题目
已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题,其中真命题是( )
| A、对任意实数k与θ,直线l和圆M相切 |
| B、对任意实数k与θ,直线l和圆M没有公共点 |
| C、对任意实数θ,必存在实数k,使得直线l与和圆M相切 |
| D、对任意实数k,必存在实数θ,使得直线l与和圆M相切 |
设z=1+i,则|z-i|=( )
A、
| ||
| B、5 | ||
C、
| ||
| D、1 |
若方程
+
=1表示准线平行于x轴的椭圆,则m的范围是( )
| x2 |
| m2 |
| y2 |
| (1-m)2 |
A、m>
| ||
B、m<
| ||
C、m>
| ||
D、m<
|
矩形ABCD中A(1,1),B(2,3)则直线BC的斜率为( )
| A、2 | ||
B、
| ||
C、-
| ||
| D、-2 |
“a=2”是“直线2x+ay+2=0与直线ax+2y-2=0平行”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
若9-x2<0,则( )
| A、0<x<3 |
| B、-3<x<0 |
| C、-3<x<3 |
| D、x<-3或x>3 |
长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于( )
| A、30° | B、45° |
| C、60° | D、90° |