题目内容

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α∈[0,π)),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐标方程;
(Ⅱ)若曲线C1与C2交于A,B两点,且|AB|>$\sqrt{7}$,求α的取值范围.

分析 (Ⅰ)曲线C2:ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ代入可得C的直角坐标方程.
(Ⅱ)求出圆心到直线的距离d,利用|AB|>$\sqrt{7}$,求α的取值范围.

解答 解:(Ⅰ)曲线C2:ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程:x2+y2=4x,配方为  C2:(x-2)2+y2=4,可得圆心(2,0),半径r=2;
(Ⅱ)设曲线C1的方程为y=k(x+1),即kx-y+k=0,圆心到直线的距离d=$\frac{|3k|}{\sqrt{{k}^{2}+1}}$
∵曲线C1与C2交于A,B两点,且|AB|>$\sqrt{7}$,
∴d=$\frac{|3k|}{\sqrt{{k}^{2}+1}}$>$\frac{3}{2}$,∴∴k<-$\frac{\sqrt{3}}{3}$或k>$\frac{\sqrt{3}}{3}$,
∴30°<α<120°.

点评 本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网