题目内容
9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α∈[0,π)),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)求C2的直角坐标方程;
(Ⅱ)若曲线C1与C2交于A,B两点,且|AB|>$\sqrt{7}$,求α的取值范围.
分析 (Ⅰ)曲线C2:ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ代入可得C的直角坐标方程.
(Ⅱ)求出圆心到直线的距离d,利用|AB|>$\sqrt{7}$,求α的取值范围.
解答 解:(Ⅰ)曲线C2:ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程:x2+y2=4x,配方为 C2:(x-2)2+y2=4,可得圆心(2,0),半径r=2;
(Ⅱ)设曲线C1的方程为y=k(x+1),即kx-y+k=0,圆心到直线的距离d=$\frac{|3k|}{\sqrt{{k}^{2}+1}}$
∵曲线C1与C2交于A,B两点,且|AB|>$\sqrt{7}$,
∴d=$\frac{|3k|}{\sqrt{{k}^{2}+1}}$>$\frac{3}{2}$,∴∴k<-$\frac{\sqrt{3}}{3}$或k>$\frac{\sqrt{3}}{3}$,
∴30°<α<120°.
点评 本题考查了极坐标方程化为直角坐标方程、点到直线的距离公式、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},则∁R(A∩B)=( )
| A. | [0,$\frac{1}{2}$) | B. | (-∞,0)∪[$\frac{1}{2}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | (-∞,0]∪[$\frac{1}{2}$,+∞) |
4.已知F1,F2是双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|=$\frac{1}{2}$|F1F2|,其中O为坐标原点,则双曲线C1的离心率是( )
| A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | 2+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
14.在($\sqrt{x}$-1)4•(x-1)2的展开式中,x项的系数为( )
| A. | -4 | B. | -2 | C. | 2 | D. | 4 |
1.若将函数f(x)=1+sinωx(0<ω<4,ω∈Z)的图象向右平移$\frac{π}{3}$个单位后,得到函数y=g(x)的图象,且y=g(x)的图象的一条对称轴方程为x=$\frac{π}{2}$,则分f(x)的最小正周期为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
19.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-9}$},则集合A∩(∁RB)=( )
| A. | {1,2} | B. | {1,2,3} | C. | {0,1,2} | D. | (0,1) |