题目内容

19.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明平面PAC⊥平面PBD;
(2)证明PB⊥平面EFD.

分析 (1)推导出AC⊥BD,AC⊥PD,从而AC⊥平面PBD,由此能证明平面PAC⊥平面PBD.
(2)推导出DE⊥PC,BC⊥DC,BC⊥PD,从而DE⊥平面PBC由此能证明PB⊥平面EFD.

解答 证明:(1)∵在四棱锥P-ABCD中,底面ABCD是正方形,
∴AC⊥BD,
∵侧棱PD⊥底面ABCD,AC?平面ABCD,∴AC⊥PD.
又∵BD∩PD=D,∴AC⊥平面PBD.
又∵AC?平面PAC,
∴由平面与平面垂直的判定定理知,平面PAC⊥平面PBD…(4分)
(2)在△PDC中,由PD=DC,E是PC的中点,知DE⊥PC.
由底面ABCD是正方形,知BC⊥DC,
由侧棱PD⊥底面ABCD,BC?底面ABCD,知BC⊥PD,
又DC∩PD=D,故BC⊥平面PCD.而DE?平面PCD,所以DE⊥BC.
由DE⊥PC,DE⊥BC及PC∩BC=C,知DE⊥平面PBC.
又PB?平面PBC,故DE⊥PB.又已知EF⊥PB,且EF∩DE=E,
∴PB⊥平面EFD.…(10分)

点评 本题考查面面垂直、线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网