题目内容

要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:

规格类型

钢板规格

A规格

B规格

C规格

第一种钢板

2

1

1

第二种钢板

1

2

3

今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格的成品,且使所用的钢板的张数最少?

思路分析:此为整点最优解问题,准确地作出可行域,是解答这类问题的关键.

:设需截第一种钢板x张,第二种钢板y张,可得且x、y都是整数,求使z=x+y取得最小值时的x、y.

首先作出可行域,其次平移直线z=x+y,可知直线经过点(),此时 x=,y=.z=x+y有最小值11,但(,)不是最优解.

首先在可行域内打网格,其次推出点A(,)附近所有整点,接着平移直线l:x+y=0,会发现当平移至B(4,8)、C(3,9)时直线与原点的距离最近,即z的最小值为12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网