题目内容
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
今需A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?
| 规格类型 | A规格 | B规格 | C规格 |
| 钢板类型 | |||
| 第一种钢板 | 2 | 1 | 1 |
| 第二种钢板 | 1 | 2 | 3 |
分析:根据条件设第一种钢板x张,第二种钢板y张,钢板总数z张,建立约束条件和目标函数,利用线性规划的知识进行求解即可.
解答:
解:设需要第一种钢板x张,第二种钢板y张,钢板总数z张,则
目标函数 z=x+y
作出可行域如图所示,作出直线x+y=0.作出一组平行直线x+y=t(其中t为参数).
其中经过可行域内的点且和原点距离最近的直线,
经过直线 x+3y=27和直线 2x+y=15的交点A(
,
),直线方程为x+y=
.
由于
和
都不是整数,而最优解(x,y)中,x,y必须都是整数,
所以,可行域内点A(
,
)不是最优解.
经过可行域内的整点(横坐标和纵坐标都是整数的点),且与原点距离最近的直线是x+y=12.
经过的整点是B(3,9)和C(4,8),它们是最优解.
故要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.
|
作出可行域如图所示,作出直线x+y=0.作出一组平行直线x+y=t(其中t为参数).
其中经过可行域内的点且和原点距离最近的直线,
经过直线 x+3y=27和直线 2x+y=15的交点A(
| 18 |
| 5 |
| 39 |
| 5 |
| 57 |
| 5 |
由于
| 18 |
| 5 |
| 39 |
| 5 |
所以,可行域内点A(
| 18 |
| 5 |
| 39 |
| 5 |
经过可行域内的整点(横坐标和纵坐标都是整数的点),且与原点距离最近的直线是x+y=12.
经过的整点是B(3,9)和C(4,8),它们是最优解.
故要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.
点评:本题主要考查线性规划的应用,利用条件建立约束条件和目标函数,利用目标函数的几何意义求最优解,考查学生解决应用问题的能力.
练习册系列答案
相关题目
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表所示:
每张钢板的面积,第一种为1m2,第二种为2m2,今需要A、B、C三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小?
| 类 型 | A规格 | B规格 | C规格 |
| 第一种钢板 | 1 | 2 | 1 |
| 第二种钢板 | 1 | 1 | 3 |
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板块数如下表:
|
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表所示:
|
类 型 |
A规格 |
B规格 |
C规格 |
|
第一种钢板 |
1 |
2 |
1 |
|
第二种钢板 |
1 |
1 |
3 |
每张钢板的面积,第一种为
,第二种为
,今需要A、B、C三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小?