题目内容

已知Sn是等比数列{an}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等差数列{bn}中,b1=1,前9项和等于27,令cn=2an•bn,求数列{cn}的前n项和Tn
考点:数列的求和,等比数列的通项公式,等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(Ⅰ)直接利用前n项和公式及等比中项求出数列的通项公式.
(Ⅱ)根据(Ⅰ)的结论及等差数列的通项公式,进一步利用乘公比错位相减法求出新数列的前n项和.
解答: 解:(Ⅰ)设数列{an}的公比为q,已知Sn是等比数列{an}的前n项和,a1>0,S4,S2,S3成等差数列,
则:2S2=S3+S4
2
a1(1-q2)
1-q
=
a1(1-q3)
1-q
+
a1(1-q4)
1-q

解得:q=-2或1(舍去)
由于:16是a2和a8的等比中项
a2a8=162
解得:a1=1
所以:an=a1qn-1=(-2)n-1
(Ⅱ)等差数列{bn}中,设公差为d,b1=1,前9项和等于27.
则:S9=9b1+
9×8
2
d=27

解得:d=
1
2

所以:bn=
n+1
2

令cn=2anbn=2(-2)n-1
n+1
2
=(n+1)(-2)n-1
Tn=c1+c2+…+cn-1+cn=2•(-2)0+3•(-2)1+…+(n+1)(-2)n-1
-2Tn=2•(-2)1+3•(-2)2+…+(n+1)(-2)n
①-②得:3Tn=2+[(-2)1+(-2)2+…+(-2)n-1]-(n+1)(-2)n
解得:Tn=
4
9
-
n
9
(-2)n
点评:本题考查的知识要点:等比数列通项公式和前n项和公式,等差数列的通项公式和前n项和公式,利用乘公比错位相减法求数列的和及相关的运算问题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网