题目内容
5.设函数$f(x)=\left\{{\begin{array}{l}{x+1{,^{\;}}x>0}\\{{x^3}+a{,^{\;}}x≤0}\end{array}}\right.$则f(1)=2;若f(x)在其定义域内为单调递增函数,则实数a的取值范围是(-∞,1].分析 根据函数的解析式求f(1)的值,再利用函数的单调性的性质,求得实数a的取值范围.
解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{x+1{,^{\;}}x>0}\\{{x^3}+a{,^{\;}}x≤0}\end{array}}\right.$,则f(1)=1+1=2;
若f(x)在其定义域内为单调递增函数,
则a≤1,即实数a的取值范围是(-∞,1],
故答案为:2;(-∞,1].
点评 本题主要考查求函数的值,函数的单调性的性质,属于基础题.
练习册系列答案
相关题目
15.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$等于( )
| A. | $-\frac{5}{3}$ | B. | 1 | C. | 2 | D. | $\frac{5}{4}$ |
16.已知定义域为$[{\frac{1}{3},3}]$的函数f(x)满足:当$x∈[{\frac{1}{3},1}]$时,$f(x)=2f(\frac{1}{x})$,且当x∈[1,3]时,f(x)=lnx,若在区间$[{\frac{1}{3},3}]$内,函数g(x)=f(x)-ax的图象与x轴有3个不同的交点,则实数a的取值范围是( )
| A. | $(0,\frac{1}{e})$ | B. | $(0,\frac{1}{2e})$ | C. | $[\frac{ln3}{3},\frac{1}{e})$ | D. | $[\frac{ln3}{3},1)$ |
13.已知函数$f(x)=\left\{\begin{array}{l}{log_a}x,x>0\\|{x+3}|,\;-4≤x<0\end{array}\right.$(a>0且a≠1).若函数f(x)的图象上有且只有两个点关于y轴对称,则a的取值范围是( )
| A. | (0,1) | B. | (1,4) | C. | (0,1)∪(1,+∞) | D. | (0,1)∪(1,4) |
10.若x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,则x+2y的最大值为( )
| A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | 2 |