题目内容
15.设x,y满足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}$,若目标函数z=2x+y的最大值为M,则式子2${\;}^{lo{g}_{2}M}$+log2M的值为11.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得M,再由对数的运算性质得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$作出可行域如图:![]()
联立$\left\{\begin{array}{l}{y=2}\\{x-y=1}\end{array}\right.$,解得A(3,2),
化目标函数z=2x+y为y=-2x+z,由图可知,当直线y=-2x+z过点A时,直线在y轴上的截距最大,
z有最大值M=8.
∴${2}^{lo{g}_{2}M}+lo{g}_{2}M={2}^{lo{g}_{2}8}+lo{g}_{2}8$=8+3=11.
故答案为:11.
点评 本题考查极大的线性规划,考查数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
5.设函数$f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期为π,且$f(x+\frac{π}{6})$是偶函数,则( )
| A. | f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递增 | B. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递增 | ||
| C. | f(x)在$(-\frac{π}{4},\frac{π}{6})$单调递减 | D. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$单调递减 |
6.在△ABC中,c=3$\sqrt{3}$,b=3,B=30°,此三角形的解的情况是( )
| A. | 一解 | B. | 两解 | C. | 无解 | D. | 不能确定 |
10.已知函数f(x)=2sin(2x-$\frac{π}{6}$)-1,下面结论中错误的是( )
| A. | 函数f(x)的最小正周期为π | |
| B. | 函数f(x)图象关于直线x=$\frac{π}{3}$对称 | |
| C. | 函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到 | |
| D. | 函数f(x)在区间$[0,\frac{π}{4}]$上是增函数 |
7.已知圆C1:x2+y2-2ax+a2-1=0和圆C2:x2+y2-2by+b2-4=0恰有三条公共切线,则$\sqrt{(a-3)^{2}+(b-4)^{2}}$的最小值为( )
| A. | 1+$\sqrt{2}$ | B. | 2 | C. | 3-$\sqrt{2}$ | D. | 4 |
4.若log6a=log7b,则a、b、1的大小关系可能是( )
| A. | a>b>1 | B. | b>1>a | C. | a>1>b | D. | 1>a>b |