题目内容
2.如果角θ的终边经过点(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则θ=2kπ+$\frac{5}{6}$π(k∈Z).分析 利用三角函数的定义,求出θ的正切值,即可得出结论.
解答 解:∵角θ的终边经过点(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
∴tanθ=-$\frac{\sqrt{3}}{3}$,∴θ=2kπ+$\frac{5}{6}$π(k∈Z),
故答案为2kπ+$\frac{5}{6}$π(k∈Z).
点评 本题主要考查任意角的三角函数的定义,属于基础题.
练习册系列答案
相关题目
12.在直角△ABC 中,∠A=90°,M 是BC 的中点,$\overrightarrow{AB}$=3$\overrightarrow{AN}$,$\overrightarrow{BM}$•$\overrightarrow{CN}$=-$\frac{5}{13}$$\overrightarrow{BC}$2,则tan∠ABC=( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{17}}{3}$ |
10.如果实数$\left\{\begin{array}{l}{2x-y-6≤0}\\{x+y-3≥0}\\{y≤3}\end{array}\right.$,满足不等式组b=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$|sinx|dx,则目标函数z=x+by的最大值是( )
| A. | 3 | B. | $\frac{21}{2}$ | C. | 6 | D. | 与b值有关 |
14.下面使用类比推理正确的是( )
| A. | 直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$ | |
| B. | 同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b | |
| C. | 若a,b∈R,则a-b>0⇒a>b.类推出:若a,b∈C,则a-b>0⇒a>b | |
| D. | 由向量加法的几何意义,可以类比得到复数加法的几何意义. |