题目内容

17.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>1,则不等式(x-2017)3f(x-2017)-27>0的解集为(  )
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

分析 令g(x)=x3f(x),判断出g(x)在(0,+∞)递增,原不等式转化为g(x-2017)>g(3),解出即可.

解答 解:∵3f(x)+xf′(x)>1,
∴3x2f(x)+x3f′(x)>x2>0,
故[x3f(x)]′>0,
故g(x)=x3f(x)在(0,+∞)递增,
∵(x-2017)3f(x-2017)-27f(3)>0,
∴(x-2017)3f(x-2017)>33f(3),
即g(x-2017)>g(3),故x-2017>3,解得:x>2020,
故原不等式的解集是(2020,+∞),
故选:D.

点评 本题考查了函数与导数,考查不等式的解集以及不等式恒成立问题,考查转化思想以及运算求解能力,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网