题目内容

9.已知集合$M=\left\{{x\left|{\frac{x-2}{x-3}<0}\right.}\right\},N=\left\{{x\left|{{{log}_{\frac{1}{2}}}(x-2)≥1}\right.}\right\}$,则M∩N=(  )
A.$[{\frac{5}{2},3})$B.$({2,\frac{5}{2}}]$C.$[{2,\frac{5}{2}}]$D.$({\frac{5}{2},3})$

分析 先求出集合M和N,由此能求出M∩N.

解答 解:∵集合$M=\left\{{x\left|{\frac{x-2}{x-3}<0}\right.}\right\},N=\left\{{x\left|{{{log}_{\frac{1}{2}}}(x-2)≥1}\right.}\right\}$,
∴M={x|2<x<3},N={x|2<x≤$\frac{5}{2}$},
∴M∩N=(2,$\frac{5}{2}$].
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网