题目内容

1.在数列{an}中,an+1=an+2,且a1=1,则$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+…+\frac{1}{{{a_9}{a_{10}}}}$=(  )
A.$\frac{9}{19}$B.$\frac{18}{19}$C.$\frac{10}{21}$D.$\frac{20}{21}$

分析 由等差数列的通项公式可得an=a1+(n-1)d=1+2(n-1)=2n-1,由$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和,即可得到所求和.

解答 解:在数列{an}中,an+1=an+2,且a1=1,
可得an=a1+(n-1)d=1+2(n-1)=2n-1,
由$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
可得$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+…+\frac{1}{{{a_9}{a_{10}}}}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{17}$-$\frac{1}{19}$)
=$\frac{1}{2}$(1-$\frac{1}{19}$)=$\frac{9}{19}$.
故选:A.

点评 本题考查等差数列的通项公式和数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网