题目内容
15.已知函数f(x)=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为M,最小值为m,则$\frac{m}{M}$的值为( )| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{5}}{3}$ |
分析 先求出函数的定义域,再变形到根号下得y=$\sqrt{4+2\sqrt{{-x}^{2}-2x+3}}$,利用二次函数的性质求最值即可.
解答 解:由题意,函数的定义域是[-3,1]
y=$\sqrt{1-x}$+$\sqrt{x+3}$=$\sqrt{4+2\sqrt{{-x}^{2}-2x+3}}$,
由于-x2-2x+3在[-3,1]的最大值是4,最小值是0,
故M=2$\sqrt{2}$,最小值m=2,
则$\frac{m}{M}$的值为$\frac{\sqrt{2}}{2}$,
故选:A.
点评 本题考查函数的最值及其几何意义,主要考查求函数的定义域以及通过变形利用单调性求函数的最值的能力,解答本题的关键是对函数的解析式进行变形,转化为易于判断最值的形式.
练习册系列答案
相关题目
5.抽取以下两个样本:①从二(1)班数学成绩最好的10名学生中选出2人代表班级参加数学竞赛;②从学校1000名高二学生中选出50名代表参加某项社会实践活动.下列说法正确的是( )
| A. | ①、②都适合用简单随机抽样方法 | |
| B. | ①、②都适合用系统抽样方法 | |
| C. | ①适合用简单随机抽样方法,②适合用系统抽样方法 | |
| D. | ①适合用系统抽样方法,②适合用简单随机抽样方法 |
6.已知$tan(α+β)=\frac{1}{2},tan(α+\frac{π}{4})=-\frac{1}{3}$,则$tan(β-\frac{π}{4})$=( )
| A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
10.方程|x|-1=$\sqrt{1-(y-1)^{2}}$所表示的图形是( )
| A. | .一个半圆 | B. | 一个圆 | C. | 两个半圆 | D. | 两个圆 |
7.若过点P(1,$\sqrt{3}$)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )
| A. | [$\frac{π}{2}$,$\frac{2π}{3}$] | B. | [$\frac{π}{6}$,$\frac{π}{3}$] | C. | [$\frac{π}{3}$,$\frac{π}{2}$] | D. | [$\frac{π}{6}$,$\frac{π}{2}$] |
8.△ABC的两边长为2,3,其夹角的余弦为$\frac{1}{3}$,则其外接圆半径为( )
| A. | $\frac{{9\sqrt{2}}}{2}$ | B. | $\frac{{9\sqrt{2}}}{4}$ | C. | $\frac{{9\sqrt{2}}}{8}$ | D. | $\frac{{2\sqrt{2}}}{9}$ |