题目内容

11.己知函数f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$(其中e为自然对数的底数),h(x)=x-$\frac{1}{x}$.
(I)求函数f(x)的单调区间;
(II)设g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,.已知直线y=$\frac{x}{e}$是曲线y=f(x)的切线,且函数g(x)在(0,+∞)上是增函数.
(i)求实数a的值;
(ii)求实数c的取值范围.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)(i)根据切线方程求出a的值即可;(ii)问题转化为$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立,根据函数的单调性求出c的范围即可.

解答 解:(Ⅰ)∵$f(x)=\frac{{a{x^2}}}{e^x}(a≠0)$,
∴$f'(x)=a(2x{e^{-x}}-{x^2}{e^{-x}})=ax(2-x){e^{-x}}=\frac{ax(2-x)}{e^x}$,
①当a>0时,
在x∈(-∞,0)∪(2,+∞)时,f'(x)<0,在x∈(0,2)时,f'(x)>0,
故f(x)在(-∞,0),(2,+∞)上是减函数,在(0,2)上是增函数;
②当a<0时,
在x∈(-∞,0)∪(2,+∞)时,f'(x)>0,在x∈(0,2)时,f'(x)<0,
故f(x)在(-∞,0),(2,+∞)上是增函数,在(0,2)上是减函数;…(4分)
(Ⅱ)(i)对f(x)求导,得$f'(x)=\frac{ax(2-x)}{e^x}$,
设直线$y=\frac{x}{e}$与曲线y=f(x)切于点P(x0,y0),
则$\left\{\begin{array}{l}\frac{x_0}{e}=\frac{ax_0^2}{{{e^{x_0}}}}\\ \frac{1}{e}=\frac{{a{x_0}({2-{x_0}})}}{{{e^{x_0}}}}\end{array}\right.$解得a=x0=1,∴a=1;             …(7分)
(ii)记函数ϕ(x)=f(x)-h(x)=$\frac{x^2}{e^x}-(x-\frac{1}{x})$,x>0,
求导,得$ϕ'(x)=\frac{x(2-x)}{e^x}-1-\frac{1}{x^2}$,
当x≥2时,ϕ'(x)<0恒成立,
当0<x<2时,$x(2-x)≤{[\frac{x+(2-x)}{2}]^2}=1$,
∴$ϕ'(x)=\frac{x(2-x)}{e^x}-1-\frac{1}{x^2}$$≤\frac{1}{e^x}-1-\frac{1}{x^2}<1-1-\frac{1}{x^2}<0$,
∴ϕ'(x)<0在(0,+∞)上恒成立,故ϕ(x)在(0,+∞)上单调递减.
又$ϕ(1)=\frac{1}{e}>0$,$ϕ(2)=\frac{4}{e^2}-\frac{3}{2}<0$,
曲线ϕ(x)=f(x)-h(x)在[1,2]上连续不间断,
∴由函数的零点存在性定理及其单调性知,?唯一的x0∈(1,2),使ϕ(x0)=0.
∴当x∈(0,x0)时,ϕ(x)>0,当x∈(x0,+∞)时,ϕ(x)<0.
∴当x>0时,$g(x)=\frac{1}{2}[f(x)+h(x)]-\frac{1}{2}|f(x)-h(x)|-c{x^2}$=$\left\{\begin{array}{l}x-\frac{1}{x}-c{x^2},0<x≤{x_0}\\ \frac{x^2}{e^x}-c{x^2},x>{x_0}\end{array}\right.$
求导,得$g'(x)=\left\{\begin{array}{l}1+\frac{1}{x^2}-2cx,\;0<x≤{x_0}\\ \frac{x(2-x)}{e^x}-2cx,\;x>{x_0}.\end{array}\right.$
由函数g(x)在(0,+∞)上是增函数,且曲线y=g(x)在(0,+∞)上连续不断知:
g'(x)≥0在(0,x0],(x0,+∞)上恒成立.
①当x∈(x0,+∞)时,$\frac{x(2-x)}{{e}^{x}}$-2cx≥0在(x0,+∞)上恒成立,
即$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立,
记$u(x)=\frac{2-x}{e^x}$,x>x0,则$u'(x)=\frac{x-3}{e^x}$,x>x0
当 x变化时,u'(x),u(x)变化情况列表如下:

x(x0,3)3(3,+∞)
u'(x)-0+
u(x)极小值
∴u(x)min=u(x)极小值=u(3)=$-\frac{1}{e^3}$,
故“$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立”,只需2c≤u(x)min=$-\frac{1}{e^3}$,即$c≤-\frac{1}{{2{e^3}}}$.
②当x∈(0,x0]时,g'(x)=1+$\frac{1}{{x}^{2}}$-2cx,
当c≤0时,g'(x)>0在x∈(0,x0]上恒成立,
综合①②知,当$c≤-\frac{1}{{2{e^3}}}$时,函数g(x)在(0,+∞)上是增函数.
故实数c的取值范围是$(-∞,\;-\frac{1}{{2{e^3}}}]$.               …(14分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网