题目内容

在△ABC中,角A、B、C所对的边分别为a、b、c,且tanA=
1
2
,cosB=
3
10
10
.则tanC的值=
 
考点:两角和与差的正切函数
专题:三角函数的求值
分析:由cosB求出tanB,利用两角和差的正切公式进行求解即可.
解答: 解:在三角形中由cosB=
3
10
10
得sinB=
1-cos2B
=
1-
90
100
=
10
10

则tanB=
sinB
cosB
=
1
3

则tanC=tan(π-A-B)=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
1
2
+
1
3
1-
1
2
×
1
3
=-
5
6
5
6
=-1,
故答案为:-1
点评:本题主要考查三角函数的求值,利用两角和差的正切公式是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网