题目内容

17.某高校要了解在校学生的身体健康状况,随机抽取了50名学生进行心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60)…第五组[70,75],按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为a:4:10.
(1)求a的值.
(2)若从第一、第五组两组数据中随机抽取两名学生的心率,求这两个心率之差的绝对值大于5的概率.

分析 (1)求出各组的频数,即可求a的值.
(2)若从第一、第五组两组数据中随机抽取两名学生的心率,确定基本事件的个数,即可求这两个心率之差的绝对值大于5的概率.

解答 解:(1)因为第二组数据的频率为 0.032×5=0.16,故第二组的频数为0.16×50=8,
第一组的频数为2a,第三组的频数为20,第四组的频数为16,第五组的频数为4
所以 2a=50-20-16-8-4=2⇒a=1.…(6分)
(2)第一组的数据有2个,第五组的数据有4个,故总的基本事件有15个,
符合题意的基本事件有8个,
所以这两个心率之差的绝对值大于5的概率$P=\frac{8}{15}$.…(12分)

点评 本题考查频率分布直方图,考查概率的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网