题目内容
若抛物线y2=mx的焦点与双曲线
-y2=1的左焦点重合,则这条抛物线的方程为( )
| x2 |
| 3 |
| A、y2=4x | ||
| B、y2=-4x | ||
C、y2=-4
| ||
| D、y2=-8x |
考点:双曲线的简单性质,抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:确定双曲线的焦点坐标,可得抛物线的焦点坐标,即可得出结论.
解答:
解:双曲线
-y2=1的左焦点为(-2,0),
∴抛物线y2=mx的焦点为(-2,0),
∴-
=2,
∴m=-8,
∴抛物线的方程为y2=-8x.
故选:D.
| x2 |
| 3 |
∴抛物线y2=mx的焦点为(-2,0),
∴-
| m |
| 4 |
∴m=-8,
∴抛物线的方程为y2=-8x.
故选:D.
点评:本题以双曲线为载体,考查抛物线的标准方程,解题的关键是正确运用抛物线、双曲线的几何性质,计算要小心.
练习册系列答案
相关题目
已知实数a,b满足ab-2a+b-4=0,且b>2,则2a+b的最小值为( )
| A、3 | B、4 | C、5 | D、6 |
已知函数f(x)=
,曲线y=f(x)在点(-1,f(-1))处的切线l垂直于直线x+2y-1=0,则实数a的值为( )
| ax |
| x+2 |
| A、1 | ||
| B、-1 | ||
C、
| ||
D、-
|
下列命题中不正确的是( )
| A、存在这样的α和β的值,使得cos(α+β)=cosαcosβ+sinαsinβ |
| B、不存在无穷多个α和β的值,使得cos(α+β)=cosαcosβ+sinαsinβ |
| C、对于任意的α和β,都有cos(α+β)=cosαcosβ-sinαsinβ |
| D、不存在这样的α和β值,使得cos(α+β)≠cosαcosβ-sinαsinβ |
当-
≤x≤
时,函数f(x)满足2f(-sinx)+3f(sinx)=sin2x,则f(x)是( )
| π |
| 2 |
| π |
| 2 |
| A、奇函数 | B、偶函数 |
| C、非奇非偶函数 | D、既奇又偶函数 |
△ABC中,已知tanA=-
,则cos(
π+A)-sin(
π-A)的值为( )
| 5 |
| 12 |
| 3 |
| 2 |
| 7 |
| 2 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|