题目内容

如图所示,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有一点E,F,且B1E=C1F,则直线EF与平面ABCD的位置关系是
 
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.
解答: 解:过E作EG∥AB交BB1于点G,连接GF,则
B1E
B1A
=
B1G
B1B

∵B1E=C1F,B1A=C1B,∴
C1F
C1B
=
B1G
B1B

∴FG∥B1C1∥BC.
又∵EG∩FG=G,AB∩BC=B,
∴平面EFG∥平面ABCD.而EF在平面EFG中,
∴EF∥平面ABCD.
故答案为:平行
点评:本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网