题目内容

5.已知三棱锥P-A BC四个顶点都在半径为2的球面上,PA⊥面ABC,PA=2,底面ABC是正三角形,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是(  )
A.$\frac{7π}{4}$B.C.$\frac{9π}{4}$D.

分析 设正△ABC的中心为O1,连结O1A.根据球的截面圆性质、正三角形的性质与勾股定理,而经过点E的球O的截面,当截面与OE垂直时截面圆的半径最小,相应地截面圆的面积有最小值,由此算出截面圆半径的最小值,从而可得截面面积的最小值.

解答 解:设正△ABC的中心为O1,连结O1A,∵O1是正△ABC的中心,A、B、C三点都在球面上,
∴O1O⊥平面ABC,∵PA⊥面ABC,PA=2,∴球心O到平面ABC的距离为O1O=$\frac{1}{2}PA$=1,
∴Rt△O1OA中,O1A=$\sqrt{O{A}^{2}-O{{O}_{1}}^{2}}=\sqrt{3}$,∴又∵E为AB的中点,△ABC是等边三角形,∴AE=AO1cos30°=$\frac{3}{2}$.
∵过E作球O的截面,当截面与OE垂直时,截面圆的半径最小,
∴当截面与OE垂直时,截面圆的面积有最小值.
此时截面圆的半径r=$\frac{3}{2}$,可得截面面积为S=πr2=$\frac{9π}{4}$,
故选:C.

点评 本题已知球的内接正三角形与球心的距离,求经过正三角形中点的最小截面圆的面积.着重考查了勾股定理、球的截面圆性质与正三角形的性质等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网