ÌâÄ¿ÄÚÈÝ
15£®·ÖÎö ÀûÓÃn´Î¶ÀÁ¢ÊÔÑéÖÐʼþAÇ¡ºÃ·¢Éúk´ÎµÄ¸ÅÂʼÆË㹫ʽºÍ»¥³âʼþ¸ÅÂʼÆË㹫ʽÄÜÇó³ö×ßL1·Ïß×î¶àÓöµ½1´ÎºìµÆµÄ¸ÅÂÊ£»ÒÀÌâÒâXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö×ß L2 ·Ïߣ¬ÍõÏÈÉúÓöµ½ºìµÆ´ÎÊý X µÄÊýѧÆÚÍû£®
½â´ð ½â£º×ßL1·Ïß×î¶àÓöµ½1´ÎºìµÆµÄ¸ÅÂÊΪ${C}_{3}^{0}¡Á£¨\frac{1}{2}£©^{3}+{C}_{3}^{1}¡Á\frac{1}{2}¡Á£¨\frac{1}{2}£©^{2}$=$\frac{1}{2}$£¬
ÒÀÌâÒâXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬
ÔòÓÉÌâÒâP£¨X=0£©=£¨1-$\frac{3}{4}$£©£¨1-$\frac{3}{5}$£©=$\frac{1}{10}$£¬
P£¨X=1£©=$\frac{3}{4}•£¨1-\frac{3}{5}£©+£¨1-\frac{3}{4}£©•\frac{3}{5}$=$\frac{9}{20}$£¬
P£¨X=2£©=$\frac{3}{4}•\frac{3}{5}=\frac{9}{20}$£¬
¡àEX=$0¡Á\frac{1}{10}+1¡Á\frac{9}{20}+2¡Á\frac{9}{20}$=$\frac{27}{20}$£®
¹Ê´ð°¸Îª£º$\frac{1}{2}$£¬$\frac{27}{20}$£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍû¡¢n´Î¶ÀÁ¢ÊÔÑéÖÐʼþAÇ¡ºÃ·¢Éúk´ÎµÄ¸ÅÂʼÆË㹫ʽºÍ»¥³âʼþ¸ÅÂʼÆË㹫ʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮
| A£® | Èôa£¾b£¬Ôòac2£¾bc2 | B£® | Èôa2£¾b2£¬Ôòa£¾b | ||
| C£® | Èôa£¾b£¬c£¼0£¬Ôòa+c£¼b+c | D£® | Èô$\sqrt{a}$£¼$\sqrt{b}$£¬Ôòa£¼b |
| A£® | $\frac{1}{5}$ | B£® | $\frac{\sqrt{5}}{5}$ | C£® | $\frac{2}{5}$ | D£® | $\frac{2\sqrt{5}}{5}$ |
| A£® | £¨-¡Þ£¬1] | B£® | £¨0£¬1] | C£® | [1£¬e] | D£® | £¨0£¬e] |