题目内容
1.已知$\overrightarrow{a}$=2,$\overrightarrow{b}$=1,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,则$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为( )| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2\sqrt{3}}{5}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 根据向量的数量积即可求出.
解答 解:设$\overrightarrow{a}$,$\overrightarrow{b}$夹角为θ,$\overrightarrow{a}$=2,$\overrightarrow{b}$=1,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,
∴$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow{b}$=${\overrightarrow{a}}^{2}$+|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ=4+2cosθ=5,
∴cosθ=$\frac{1}{2}$,
故选:A.
点评 本题考查了向量的数量积公式,属于基础题.
练习册系列答案
相关题目
9.函数f(x)=Acos(ωx+φ)(A>0,ω>0)在x=2015处取得最小值,则( )
| A. | f(x-2015)一定是奇函数 | B. | f(x-2015)一定是偶函数 | ||
| C. | f(x+2015)一定是奇函数 | D. | f(x+2015)一定是偶函数 |
16.若A为△ABC的一个内角,且sinA+cosA=$\frac{1}{5}$,则A=( )
| A. | arcsin$\frac{4}{5}$ | B. | arcsin(-$\frac{4}{5}$) | C. | $\frac{π}{2}$+arcsin$\frac{4}{5}$ | D. | $\frac{π}{2}$+arccos$\frac{4}{5}$ |
6.下列叙述正确的是( )
| A. | 数列1,3,5,7与7,5,3,1是相同的数列 | |
| B. | 数列0,1,2,3,…可以表示为{n} | |
| C. | 数列0,1,0,1,…是常数列 | |
| D. | 数列{$\frac{n}{n+1}$}是递增数列 |
10.已知tna2α=-$\frac{4}{3}$,α是第一象限角,则tanα等于( )
| A. | 1 | B. | 3 | C. | 4 | D. | 2 |