题目内容

1.设点P为有公共焦点F1、F2的椭圆M和双曲线Γ的一个交点,$cos∠{F_1}P{F_2}=\frac{4}{5}$,椭圆M的离心率为e1,双曲线Γ的离心率为e2.若e2=2e1,则e1=$\frac{{\sqrt{130}}}{20}$.

分析 由椭圆及双曲线的定义可知m+n=2a1,m-n=2a2.利用余弦定理,求得10=$\frac{1}{{e}_{1}^{2}}$+$\frac{9}{{e}_{2}^{2}}$,将e2=2e1,即可求得e1

解答 解:设椭圆与双曲线的半长轴分别为a1,a2,半焦距为c.e1=$\frac{c}{{a}_{1}}$,e2=$\frac{c}{{a}_{2}}$.
设|PF1|=m,|PF2|=n,不妨设m>n,
则m+n=2a1,m-n=2a2
∴m2+n2=2${a}_{1}^{2}$+2${a}_{2}^{2}$,mn=${a}_{1}^{2}$-${a}_{2}^{2}$
4c2=m2+n2-2mncos∠F1PF2
∴4c2=2${a}_{1}^{2}$+2${a}_{2}^{2}$-2(${a}_{1}^{2}$-${a}_{2}^{2}$)×$\frac{4}{5}$.
整理得:10c2=${a}_{1}^{2}$+9${a}_{2}^{2}$,
∴10=$\frac{1}{{e}_{1}^{2}}$+$\frac{9}{{e}_{2}^{2}}$,又e2=2e1
∴40${e}_{1}^{2}$=13,e1∈(0,1).
解得:e1=$\frac{{\sqrt{130}}}{20}$.
∴椭圆的离心率e1=$\frac{{\sqrt{130}}}{20}$.
故答案为:$\frac{{\sqrt{130}}}{20}$.

点评 本题考查双曲线及椭圆的离心率公式,考查余弦定理的应用,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网