题目内容

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD.AB=AD=
1
2
CD=2,点M在线段EC上且不与E、C重合.
(1)当点M是EC中点时,求证:BM∥平面ADEF;
(2)当三棱锥M-BDE的体积为
16
9
时,求平面BDM与平面ABF所成锐二面角的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面平行的判定
专题:综合题,空间位置关系与距离,空间角
分析:(I)取DE中点N,连接MN,AN,由三角形中位线定理,结合已知中AB∥CD,AB=AD=2,CD=4,易得四边形ABMN为平行四边形,所以BM∥AN,再由线面平面的判定定理,可得BM∥平面ADEF;
(2)建立空间直角坐标系,用坐标表示点与向量,利用三棱锥M-BDE的体积为
16
9
,求出M的坐标,求出平面BDM的法向量、平面ABF的法向量,利用向量的夹角公式,即可求平面BDM与平面ABF所成锐二面角的余弦值.
解答: (1)证明:取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MN∥CD,且MN=
1
2
CD.
由已知AB∥CD,AB=
1
2
CD,所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形,所以BM∥AN
又因为AN?平面ADEF,
且BM?平面ADEF,
所以BM∥平面ADEF;
(2)解:以直线DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),B(2,2,0)C(0,4,0),E(0,0,2),
则∵三棱锥M-BDE的体积为
16
9

1
3
S△DEM•AD
=
16
9

∴S△DEM=
8
3

∵S△DEC=4,
EM
EC
=
2
3

∴M(0,
8
3
2
3
),
设平面BDM的法向量
n1
=(x,y,z),∵D(0,0,0),F(2,0,2),∴
2x+2y=0
8
3
y+
2
3
z=0

∴取
n1
=(1,-1,4),
∵平面ABF的法向量
n2
=(1,0,0),
∴cos<
n1
n2
>=
1
1•
18
=
2
6

∴平面BDM与平面ABF所成锐二面角的余弦值为
2
6
点评:本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,熟练掌握利用向量知识解决立体几何问题是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网