题目内容

4.已知y=f(x)是定义在R上的增函数且为奇函数,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是(  )
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

分析 由函数y=f(x)为奇函数,f(x2-6x+21)+f(y2-8y)<0恒成立,可把问题转化为(x-3)2+(y-4)2<4,借助于的有关知识可求.

解答 解:∵函数y=f(x)为奇函数,定义在R上的增函数且f(x2-6x+21)+f(y2-8y)<0恒成立
∴f(x2-6x+21)<-f(y2-8y)=f(8y-y2)恒成立,
∴x2-6x+21<8y-y2
∴(x-3)2+(y-4)2<4恒成立,
设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,
则d=$\sqrt{{x}^{2}+{y}^{2}}$表示区域内的点和原点的距离.
由下图可知:d的最小值是OA=$\sqrt{13}$,
OB=OC+CB,5+2=7,
当x>3时,x2+y2的范围为(13,49).
故选:C.

点评 本题考查了函数的奇偶性、单调性及圆的有关知识,解决问题的关键是把“数”的问题转化为“形”的问题,借助于图形的几何意义减少了运算量,体现“数形结合:及”转化”的思想在解题中的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网