题目内容
6.某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:| 女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 | |
| 男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.
分析 (Ⅰ)求出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大.
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,分别求出相应在的概率,由此能求出X的分布列和数学期望.
解答 解:(Ⅰ)女性用户和男性用户的频率分布直方图分别如下左、右图:![]()
由图可得女性用户的波动小,男性用户的波动大.
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,
其中评分小于90分的人数为4,从6人人任取3人,
记评分小于90分的人数为X,则X取值为1,2,3,
$P(X=1)=\frac{C_4^1C_2^2}{C_6^3}=\frac{1}{5}$,
$P(X=2)=\frac{C_4^2C_2^1}{C_6^3}=\frac{3}{5}$,
$P(X=3)=\frac{C_4^3C_2^2}{C_6^3}=\frac{1}{5}$.
所以X的分布列为
| X | 1 | 2 | 3 |
| P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
点评 本题考查频率分布直方略产的应用,考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合思想、转化化归思想,是中档题.
练习册系列答案
相关题目
17.已知向量$\overline{a}$,$\overline{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=8,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|等于( )
| A. | 5 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 6 |
18.已知过点(-2,0)的直线与圆O:x2+y2-4x=0相切与点P(P在第一象限内),则过点P且与直线$\sqrt{3}$x-y=0垂直的直线l的方程为( )
| A. | x+$\sqrt{3}$y-2=0 | B. | x+$\sqrt{3}$y-4=0 | C. | $\sqrt{3}$x+y-2=0 | D. | x+$\sqrt{3}$y-6=0 |
16.“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如图所示
信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是$\frac{1}{2}$;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是$\frac{3}{8}$.
| 编码方式1 | 编码方式2 | |
| 码元0 | ||
| 码元1 |