题目内容

14.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为$\frac{1}{2}$,点P为椭圆上一点,且△PF1F2的周长为12,那么C的方程为(  )
A.$\frac{{x}^{2}}{25}$+y2=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

分析 由题意可得$\left\{\begin{array}{l}{2a+2c=12}\\{\frac{c}{a}=\frac{1}{2}}\end{array}\right.$,又b2=a2-c2.联立解出即可得出椭圆C的方程.

解答 解:由题意可得$\left\{\begin{array}{l}{2a+2c=12}\\{\frac{c}{a}=\frac{1}{2}}\end{array}\right.$,又b2=a2-c2.解得a=4,c=2.
∴b2=a2-c2=12.∴椭圆C的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.
故选:D.

点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网