ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãA¡¢BµÄ×ø±ê·Ö±ðÊÇ£¨-1£¬0£©£¬£¨1£¬0£©£¬Ö±ÏßAM¡¢BMÏཻÓÚµãM£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪm£¨m¡Ü-1£©£¬¼ÇµãMµÄ¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÅжÏÇúÏßCΪºÎÖÖÇúÏߣ»
£¨2£©ÈôÇúÏßC¾¹ýµã£¨
£¬1£©£®
¢Ùµ±µãMÔÚÇúÏßCÉÏÔ˶¯Ê±£¬Çó
•
+
2µÄȡֵ·¶Î§£»
¢Ú¹ýµãD£¨2£¬0£©µÄÖ±ÏßLÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãE¡¢F£¨EÔÚD¡¢FÖ®¼ä£©£¬Çó¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈµÄȡֵ·¶Î§£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÅжÏÇúÏßCΪºÎÖÖÇúÏߣ»
£¨2£©ÈôÇúÏßC¾¹ýµã£¨
| ||
| 2 |
¢Ùµ±µãMÔÚÇúÏßCÉÏÔ˶¯Ê±£¬Çó
| MA |
| MB |
| MA |
¢Ú¹ýµãD£¨2£¬0£©µÄÖ±ÏßLÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãE¡¢F£¨EÔÚD¡¢FÖ®¼ä£©£¬Çó¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈµÄȡֵ·¶Î§£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèM£¨x£¬y£©£»ÔòkAM=
£¬kMB=
£»ÔòÓÐ
•
=m£»ÌÖÂÛmÈ·¶¨ÇúÏßµÄÐÎ×´¼°·½³Ì£»
£¨2£©´úÈëÇóµÃÇúÏß·½³ÌΪ
+x2=1£¬
¢Ù´Ó¶øÉèÉèM£¨cosa£¬
sina£©£»±íʾ³öÏòÁ¿
=£¨cosa+1£¬
sina£©£¬
=£¨cosa-1£¬
sina£©£»´Ó¶øÇóÆäȡֵ·¶Î§£»
¢ÚÉèÖ±ÏßLµÄ·½³ÌΪx=my+2£»ÓëÍÖÔ²
+x2=1ÁªÁ¢ÏûxµÃ£¬£¨2m2+1£©y2+8my+6=0£»´Ó¶øÇó³öm2£¾
£»ÔÙÓÉͼÏó¿ÉÖª£¬¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈΪE£¬FÁ½¸öµÄ×Ý×ø±êµÄ¾ø¶ÔÖµÖ®±È£¬¹ÊÇó½â·½³Ì£¨2m2+1£©y2+8my+6=0£»´Ó¶øµÃµ½±ÈÖµ
£¬·ÖÀë³£Êý·¨ÇóÆäȡֵ·¶Î§¼´¿É£®
| y-0 |
| x+1 |
| y-0 |
| x-1 |
| y-0 |
| x+1 |
| y-0 |
| x-1 |
£¨2£©´úÈëÇóµÃÇúÏß·½³ÌΪ
| y2 |
| 2 |
¢Ù´Ó¶øÉèÉèM£¨cosa£¬
| 2 |
| MA |
| 2 |
| MB |
| 2 |
¢ÚÉèÖ±ÏßLµÄ·½³ÌΪx=my+2£»ÓëÍÖÔ²
| y2 |
| 2 |
| 3 |
| 2 |
-8m-
| ||
-8m+
|
½â´ð£º
½â£º£¨1£©ÉèM£¨x£¬y£©£»Ôò
kAM=
£¬kMB=
£»
ÔòÓÉÌâÒâ¿ÉµÃ£¬
•
=m£»
¹Êy2=m£¨x2-1£©£»
Èôm=-1£¬Ôò¿É»¯Îªy2+x2=1£»
±íʾÁËÒÔÔµãΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¨³ýA£¬Bµã£©£»
Èôm£¼-1£»Ôò
+x2=1£»
±íʾÁ˽¹µãÔÚyÖᣬÒÔA¡¢BΪ¶ÌÖá¶ËµãµÄÍÖÔ²£¨³ýA£¬Bµã£©£»
£¨2£©ÓÉÌâÒ⣬
+
=1£»
¹Êm=-2£»
¹ÊC£º
+x2=1£»
¢ÙÉèM£¨cosa£¬
sina£©£»
Ôò
=£¨cosa+1£¬
sina£©£¬
=£¨cosa-1£¬
sina£©£»
•
+
2=£¨cosa+1£¬
sina£©•£¨2cosa£¬2
sina£©
=2cos2a+2cosa+4sin2a
=-2cos2a+2cosa+4£»
¹Ê-2-2+4¡Ü
•
+
2¡Ü
£»
¼´0¡Ü
•
+
2¡Ü
£»
¢ÚÉèÖ±ÏßLµÄ·½³ÌΪx=my+2£»
ÓëÍÖÔ²
+x2=1ÁªÁ¢ÏûxµÃ£¬
£¨2m2+1£©y2+8my+6=0£»
¹Ê¡÷=64m2-4¡Á6¡Á£¨2m2+1£©£¾0£¬
½âµÃ£¬m2£¾
£»
y=
£»²»·ÁÉèm£¼0£»
¹Ê¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈΪ
=
=-1+
=-1+
£»
¡ßm2£¾
£¬
¡à0£¼
£¼4£»
¹Ê8£¼8+
£¼12£»
¹Ê
£¼
£¼2£»
¹Ê
£¼-1+
£¼1£»
¹Ê¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈµÄȡֵ·¶Î§Îª£¨
£¬1£©£®
kAM=
| y-0 |
| x+1 |
| y-0 |
| x-1 |
ÔòÓÉÌâÒâ¿ÉµÃ£¬
| y-0 |
| x+1 |
| y-0 |
| x-1 |
¹Êy2=m£¨x2-1£©£»
Èôm=-1£¬Ôò¿É»¯Îªy2+x2=1£»
±íʾÁËÒÔÔµãΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²£¨³ýA£¬Bµã£©£»
Èôm£¼-1£»Ôò
| y2 |
| -m |
±íʾÁ˽¹µãÔÚyÖᣬÒÔA¡¢BΪ¶ÌÖá¶ËµãµÄÍÖÔ²£¨³ýA£¬Bµã£©£»
£¨2£©ÓÉÌâÒ⣬
| 1 |
| -m |
| 1 |
| 2 |
¹Êm=-2£»
¹ÊC£º
| y2 |
| 2 |
¢ÙÉèM£¨cosa£¬
| 2 |
Ôò
| MA |
| 2 |
| MB |
| 2 |
| MA |
| MB |
| MA |
| 2 |
| 2 |
=2cos2a+2cosa+4sin2a
=-2cos2a+2cosa+4£»
¹Ê-2-2+4¡Ü
| MA |
| MB |
| MA |
| 9 |
| 2 |
¼´0¡Ü
| MA |
| MB |
| MA |
| 9 |
| 2 |
¢ÚÉèÖ±ÏßLµÄ·½³ÌΪx=my+2£»
ÓëÍÖÔ²
| y2 |
| 2 |
£¨2m2+1£©y2+8my+6=0£»
¹Ê¡÷=64m2-4¡Á6¡Á£¨2m2+1£©£¾0£¬
½âµÃ£¬m2£¾
| 3 |
| 2 |
y=
-8m¡À
| ||
| 2m2+1 |
¹Ê¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈΪ
| ||||
|
-8m-
| ||
-8m+
|
=-1+
| -16m | ||
-8m+
|
=-1+
| 16 | ||||
8+
|
¡ßm2£¾
| 3 |
| 2 |
¡à0£¼
16-
|
¹Ê8£¼8+
16-
|
¹Ê
| 4 |
| 3 |
| 16 | ||||
8+
|
¹Ê
| 1 |
| 3 |
| 16 | ||||
8+
|
¹Ê¡÷ODEÓë¡÷ODF£¨ÆäÖÐOÊÇÖ±½Ç×ø±êϵµÄ×ø±êÔµã£©Ãæ»ýÖ®±ÈµÄȡֵ·¶Î§Îª£¨
| 1 |
| 3 |
µãÆÀ£º±¾Ì⿼²éÁËÔ²×¶ÇúÏßÖеÄ×îÖµÎÊÌ⼰ȡֵ·¶Î§ÎÊÌ⣬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|