题目内容

定义在R上的函数f(x)满足f(x-2)是偶函数且f(x+1)是奇函数,又f(4)=2013,则f(2014)=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据题意求出函数f(x)的对称轴为x=-2,对称中心为(1,0),从而求出函数f(x)的周期,进而求出f(2014)的值.
解答: 解:∵f(x-2)是偶函数,∴f(x-2)的对称轴为x=0,
f(x-2)向左平移两个单位得到f(x)的图象,∴f(x)的对称轴为x=-2,
∵f(x+1)是奇函数,∴f(x+1)的对称中心为(0,0),
f(x+1)向右平移1个单位得到f(x)的图象,∴f(x)的对称中心为(1,0)
对称轴与对称中心的距离为3,∴周期T=4×3=12,
由2014=12×167+10,∴f(2014)=f(10)=f(-2),
f(-2)和f(4)正好关于f(x)的对称中心(1,0)对称,
而f(4)=2013,∴f(-2)=-2013,∴f(2014)=-2013,
故答案为:-2013.
点评:本题考查了函数的周期性,函数的奇偶性,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网