题目内容

15.已知等比数列{an}的前n项和为Sn,若Sn=3n+t,则a2=6,t=-1.

分析 利用${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,求出数列的前三项,再由a1,a2,a3成等比数列,能求出t的值.

解答 解:∵等比数列{an}的前n项和为Sn,Sn=3n+t,
∴a1=S1=3+t,
a2=S2-S1=(9+t)-(3+t)=6,
a3=S3-S2=(27+t)-(9+t)=18,
∵a1,a2,a3成等比数列,
∴${{a}_{2}}^{2}={a}_{1}{a}_{3}$,即62=(3+t)×18,
解得t=-1.
故答案为:6,-1.

点评 本题考查等比数列的第二项的求法,考查实数值的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网