题目内容

19.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈[-$\frac{π}{2}$,0])的周期为π,将函数f(x)的图象沿着y轴向上平移一个单位得到函数g(x)图象,设g(x)<1,对任意的x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,当φ取得最小值时,g($\frac{π}{4}$)的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

分析 根据g(x)<1得出-π+2kπ<2x+φ<2kπ,k∈Z;再根据x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)得出-$\frac{2π}{3}$+φ<2x+φ<-$\frac{π}{6}$+φ,可求φ的范围,从而求出g($\frac{π}{4}$)的值.

解答 解:∵函数f(x)=sin(ωx+φ)(ω>0,φ∈[-$\frac{π}{2}$,0])的周期为π=$\frac{2π}{ω}$,
∴ω=2,f(x)=sin(2x+φ),
g(x)=sin(2x+φ)+1<1,
∴sin(2x+φ)<0,
∴-π+2kπ<2x+φ<2kπ,k∈Z;
又x∈(-$\frac{π}{3}$,-$\frac{π}{12}$),
∴-$\frac{2π}{3}$<2x<-$\frac{π}{6}$,
∴-$\frac{2π}{3}$+φ<2x+φ<-$\frac{π}{6}$+φ;
∴2kπ-$\frac{π}{3}$≤φ≤2kπ+$\frac{π}{6}$,k∈Z;
又∵φ∈[-$\frac{π}{2}$,0],
∴-$\frac{π}{3}$≤φ≤0,
∴当φ取得最小值-$\frac{π}{3}$时,g($\frac{π}{4}$)=sin(2×$\frac{π}{4}$-$\frac{π}{3}$)+1=$\frac{1}{2}+1$=$\frac{3}{2}$.
故选:C.

点评 本题考查了正弦函数的图象与性质的应用问题,解题的关键是求出φ的取值范围,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网