题目内容

16.以下几个命题中真命题的序号为②③④.
①在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相关系数r的绝对值越接近于1,两个随机变量的线性相关性越强;
③用秦九昭算法求多项式f(x)=208+9x2+6x4+x6在x=-4时,v2的值为22;
④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于4的直线有且只有两条.

分析 ①,m并不属于α,根据线面垂直的关系定理,不能得到m⊥β;
②,利用线性相关系数的性质取判断.
③,先将多项式改写成如下形式:f(x)=(((((x)x+6)x)x+9)x)x+208,将x=-4代入并依次计算v0,v1,v2的值,即可得到答案.
④,讨论直线l的斜率不存在和斜率为0时都不符合题意,设l为y=k(x-1)与抛物线方程联立消去y,得出A、B两点的横坐标之和,求得k的值,判定命题正确

解答 对于①,因为m并不属于α,根据线面垂直的关系定理,不能得到m⊥β,即错误.
对于②,根据线性相关系数r的意义可知,当r的绝对值越接近于1时,两个随机变量线性相关性越强,故正确;
对于③,∵f(x)=208+9x2+6x4+x6=(((((x)x+6)x)x+9)x)x+208,
当x=-4时,v0=1,v1=1×(-4)=-4,v2=-4×(-4)+6=22,故正确;
对于④,过抛物线y2=4x的焦点F(1,0)作直线l与抛物线相交于A、B两点,
当直线l的斜率不存在时,横坐标之和等于2,不合题意;
当直线l的斜率为0时,只有一个交点,不合题意;
∴设直线l的斜率为k(k≠0),则直线l为y=k(x-1),
代入抛物线y2=4x得,k2x2-2(k2+2)x+k2=0;
∵A、B两点的横坐标之和等于5,$\frac{2({k}^{2}+2)}{{k}^{2}}$=4,解得k2=2,
∴这样的直线有且仅有两条.故正确;
故答案为:②③④

点评 本题考查了命题真假的判定,涉及到了大量的基础知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网