ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªÊýÁÐ{an}Âú×ã$\frac{a_n}{{{a_n}+2}}=\frac{1}{2}{a_{n+1}}$£¨n¡ÊN*£©£¬a1=1£®£¨1£©Ö¤Ã÷£ºÊýÁÐ$\{\frac{1}{a_n}\}$ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èô¼ÇbnΪÂú×ã²»µÈʽ${£¨\frac{1}{2}£©^n}£¼{a_k}¡Ü{£¨\frac{1}{2}£©^{n-1}}£¨n¡Ê{N^*}£©$µÄÕýÕûÊýkµÄ¸öÊý£¬ÊýÁÐ{$\frac{{b}_{n}}{{a}_{n}}$}µÄǰnÏîºÍΪSn£¬Çó¹ØÓÚnµÄ²»µÈʽSn£¼4032µÄ×î´óÕýÕûÊý½â£®
·ÖÎö £¨1£©¶ÔÌõ¼þʽȡµ¹Êý£¬ÒÆÏî¼´¿ÉµÃ³ö$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$£¬¹Ê¶øÊýÁÐ$\{\frac{1}{a_n}\}$ΪµÈ²îÊýÁУ¬ÀûÓõȲîÊýÁеÄͨÏʽÇó³ö$\frac{1}{{a}_{n}}$¼´¿ÉµÃ³öan£»
£¨2£©¸ù¾Ý²»µÈʽ${£¨\frac{1}{2}£©^n}£¼{a_k}¡Ü{£¨\frac{1}{2}£©^{n-1}}£¨n¡Ê{N^*}£©$µÃ³öbn£¬ÀûÓôíλÏà¼õ·¨Çó³öSn£¬´Ó¶øµÃ³öSn£¼4032µÄ×î´óÕýÕûÊý½â£®
½â´ð ½â£º£¨1£©¡ß$\frac{{a}_{n}}{{a}_{n}+2}=\frac{{a}_{n+1}}{2}$£¬
¡à$\frac{2}{{a}_{n+1}}$-$\frac{2}{{a}_{n}}$=1£¬¼´$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$£¬
ÓÖ$\frac{1}{{a}_{1}}$=1£¬
¡à{$\frac{1}{{a}_{1}}$}ÊÇÒÔ1ΪÊ×ÏÒÔ$\frac{1}{2}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$£¨n-1£©=$\frac{1}{2}$n+$\frac{1}{2}$£¬
¡àan=$\frac{2}{n+1}$£®
£¨2£©¡ß£¨$\frac{1}{2}$£©n£¼ak¡Ü£¨$\frac{1}{2}$£©n-1£¬¼´£¨$\frac{1}{2}$£©n£¼$\frac{2}{k+1}$¡Ü£¨$\frac{1}{2}$£©n-1£¬
¡à2n-1£¼k¡Ü2n+1-1£¬
¡àbn=2n+1-1-£¨2n-1£©=2n£¬
¡à$\frac{{b}_{n}}{{a}_{n}}$=£¨n+1£©2n-1£¬
¡àSn=2•20+3•21+4•22+¡+£¨n+1£©•2n-1£¬
¡à2Sn=2•2+3•22+4•23+¡+£¨n+1£©•2n£¬
Á½Ê½Ïà¼õµÃ£º-Sn=2+2+22+¡+2n-1-£¨n+1£©•2n
=2+$\frac{2£¨1-{2}^{n-1}£©}{1-2}$-£¨n+1£©•2n£¬
=-n•2n£¬
¡àSn=n•2n£®
¡ßSn+1-Sn=£¨n+1£©•2n+1-n•2n=£¨n+2£©•2n£¾0£¬
¡à{Sn}µ¥µ÷µÝÔö£¬
ÓÖS8=2048£¼4032£¬S9=4608£¾4032£¬
¡à¹ØÓÚnµÄ²»µÈʽSn£¼4032µÄ×î´óÕýÕûÊý½âΪ8£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄÅжÏÓëͨÏʽ£¬´íλÏà¼õ·¨ÊýÁÐÇóºÍ£¬ÊôÓÚÖеµÌ⣮
| A£® | 15¡ã | B£® | 75¡ã | C£® | 15¡ã»ò75¡ã | D£® | 60¡ã»ò120¡ã |
| A£® | 1 | B£® | $\frac{1}{2}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | 2 | D£® | $2\sqrt{2}$ |