题目内容
8.已知数列{an}的前n项和Sn满足2an+1-Sn=0,且a1=1.(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)求数列{nan}的前n项和Tn.
分析 (I)利用递推关系与等比数列的通项公式即可得出;
(II)利用等比数列的前n项和公式、“错位相减法”即可得出.
解答 解:(I)∵2an+1-Sn=0,且a1=1.
∴当n≥2时,2an-Sn-1=0,可得2an+1-2an=an,∴an+1=$\frac{3}{2}$an,
∴数列{an}是等比数列,公比为$\frac{3}{2}$,∴an=$(\frac{3}{2})^{n-1}$.
(II)nan=$n•(\frac{3}{2})^{n-1}$.
∴数列{nan}的前n项和Tn=1+2×$\frac{3}{2}$+3×$(\frac{3}{2})^{2}$+…+$n•(\frac{3}{2})^{n-1}$ ①,
$\frac{3}{2}$Tn=$\frac{3}{2}$+$2×(\frac{3}{2})^{2}$++…+(n-1)$•(\frac{3}{2})^{n-1}$+n$•(\frac{3}{2})^{n}$ ②,
由①-②得-$\frac{1}{2}{T}_{n}$=1+$\frac{3}{2}+(\frac{3}{2})^{2}$+…+$(\frac{3}{2})^{n-1}$-n$(\frac{3}{2})^{n}$=$\frac{1-(\frac{3}{2})^{n}}{1-\frac{3}{2}}$-n$(\frac{3}{2})^{n}$=(2-n)$•(\frac{3}{2})^{n}$-2,
∴Tn=(2n-4)$•(\frac{3}{2})^{n}$+4.
点评 本题考查了等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
16.已知i为虚数单位,a∈R,若$\frac{2-i}{a+i}$为纯虚数,则复数z=2a+$\sqrt{2}$i的模等于( )
| A. | $\sqrt{2}$ | B. | $\sqrt{11}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
3.设命题p:?x>0,sinx>2x-1,则¬p为( )
| A. | ?x>0,sinx≤2x-1 | B. | ?x>0,sinx<2x-1 | C. | ?x>0,sinx<2x-1 | D. | ?x>0,sinx≤2x-1 |
20.如图所示的程序框图,运行相应的程序,输出的S值为( )

| A. | 12 | B. | 24 | C. | 48 | D. | 120 |
17.在平面区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$内任取一点P(x,y),则(x,y)满足2x+y≤1的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |