题目内容

18.已知6tanαsinα=5,α∈(-$\frac{π}{2}$,0),则sinα的值是-$\frac{\sqrt{5}}{3}$.

分析 由已知式子和平方关系可得cosα,由α的范围,求出cosα的值为$\frac{2}{3}$,即可求出sinα的值.

解答 解:∵6tanαsinα=5,
∴6sin2α=5cosα,
∴6cos2α+5cosα-6=0
∵α∈(-$\frac{π}{2}$,0),
∴cosα=$\frac{2}{3}$,
∴sinα=-$\frac{\sqrt{5}}{3}$.
故答案为:-$\frac{\sqrt{5}}{3}$.

点评 此题考查了同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网