题目内容
已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF的重心到准线距离为 .
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,进而求出△MNF的重心到准线距离.
解答:
解:∵F是抛物线y2=4x的焦点,
∴F(1,0),准线方程x=-1,
设M(x1,y1),N(x2,y2),
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴△MNF的重心的横坐标为
,
∴△MNF的重心到准线距离为
.
故答案为:
.
∴F(1,0),准线方程x=-1,
设M(x1,y1),N(x2,y2),
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴△MNF的重心的横坐标为
| 5 |
| 3 |
∴△MNF的重心到准线距离为
| 8 |
| 3 |
故答案为:
| 8 |
| 3 |
点评:本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
练习册系列答案
相关题目
四棱锥的三视图如图所示,则最长的一条侧棱的长度是( )

A、
| ||
| B、5 | ||
C、
| ||
D、2
|
下列函数中,既是偶函数又在区间(0,+∞)上递增的函数为( )
| A、y=x3 |
| B、y=|log2x| |
| C、y=-x2 |
| D、y=|x| |
已知抛物线y=
x2的焦点为F,定点M(1,2),点A为抛物线上的动点,则|AF|+|AM|的最小值为( )
| 1 |
| 4 |
A、
| ||
B、
| ||
| C、3 | ||
| D、5 |